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Abstract 

Diffuse intensities of X-rays scattered from 
substitutionally disordered molecular crystals have 
been measured from Weissenberg photographs and 
analysed using linear least-squares methods to deter- 
mine the short-range correlations between molecular 
sites. The measured diffuse scattering was represented 
as a linear combination of calculated random and 
correlation distributions. This procedure is completely 
general and makes no assumptions about correlations 
between non-nearest neighbours. Of the 74 correlation 
coefficients describing the short-range order in 2,3- 
dichloro-6,7-dimethylanthracene, 35 were found to be 
significant, 13 at the 3a level. The largest coefficients 
within each correlatidn neighbourhood were +0.46 (7), 
+0-37 (4) and - 0 . 2 4  (5) involving six of the nearest- 
neighbour sites. 

Introduction 

In previous papers we have described our interest in 
disordered molecular crystals, and a number of studies 
have been reported (Welberry & Jones, 1980; Jones & 
Welberry, 1980; Welberry, Jones & Epstein, 1982; 
Epstein, Welberry & Jones, 1982). A method of 
recording and measuring diffuse scattering data has 
been developed (Welberry, 1983) and a combination of 
optical diffraction analogue experiments (Welberry & 
Jones, 1980) together with direct calculations (Epstein, 
Welberry & Jones, 1982) has been used to interpret the 
results. To date, interpretation of the diffuse scattering 
patterns has been by visual comparison with either 
optical transforms of a computer-generated model or 
contour maps of calculated intensity distributions. 
Using these methods, only semi-quantitative estimates 
(at best) of short-range intermolecular correlation 
coefficients could be obtained and the number of 
distinct correlations that could be assigned was limited. 
In this paper we describe the development of a 
least-squares procedure which allows quantitative 
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determination of such parameters, using numerical 
measurements of diffuse scattering from X-ray films, 
and calculated diffuse patterns which assume only a 
prior knowledge of the 'average' crystal structure 
obtained by conventional Bragg diffraction. In this 
work, no assumption is made of the way in which 
correlations between more distant sites depend on 
nearest-neighbour correlations. Such assumptions were 
a feature of the previous studies by us and by other 
workers (Flack, 1970; Glazer, 1970). 

The molecular crystals being studied are derivatives 
of anthracene or benzene in which disorder arises 
because of the similar packing volumes of halogen 
substituents (Cl or Br) and methyl substituents. At a 
given substituent site the halogen or methyl groups may 
be interchanged. In the examples studied to date, each 
molecular site may be occupied by the molecule in one 
of two possible orientations, A or B. These two 
orientations differ essentially only in the disposition of 
the methyl and halogen substituents, the aromatic 
nucleus of the molecule remaining fixed. Such disorder 
is 'locked-in' at growth since the energy barriers to 
subsequent reorientation are relatively high. For the 
purposes of the present work we have chosen the 
example of 2,3-dichloro-6,7-dimethylanthracene (Wel- 
berry, Jones & Puza, 1983). For this compound each 
molecular site has four sites of substituent disorder. In 
previous work we have found significant short-range 
ordering when disordered sites on neighbouring mole- 
cules are in close contact. We might therefore expect 
that the correlation structure for this compound would 
be more complex than our earlier examples which had 
only two disordered sites per molecule. In this paper we 
use this example primarily to illustrate the methods 
described; a more detailed account of the disorder 
properties of 2,3-dichloro-6,7-dimethylanthracene will 
be published elsewhere. 

Diffuse scattering from a disordered molecular crystal 

If thermal diffuse scattering is neglected, the intensities 
of X-rays scattered by a substitutionally disordered 
molecular crystal consist of sharp peaks at the 
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reciprocal-lattice positions, corresponding to Bragg 
scattering from an ordered crystal of 'average' mole- 
cules, and broad diffuse scattering elsewhere in 
reciprocal space, resulting from the substitutional 
disorder. 

From the analysis of the Bragg intensities, the site 
occupancies of the components of the crystal (i.e. the 
one-body distribution function of the crystal) may be 
determined, as well as the structural and vibrational 
parameters of the individual components. From the 
diffuse intensities the short-range correlations between 
the sites (i.e. the two-body distribution function) may 
be determined. The diffuse scattering of X-rays from a 
two-component substitutionally disordered molecular 
crystal may be represented by (Epstein, Welberry & 
Jones, 1982) 

cell 

Idirr ( s )=  Nmam ~ ~ ~ CAn~AFn(s) AF*(s), (1) 
n m 

where the magnitude of the scattering vector s is 
41rsin 0/2; N is the number of unit cells; m a is the 
concentration of molecules of type A; C ~  is a 
correlation coefficient, related to the conditional prob- 
ability that site n of the crystal is occupied by a 
molecule of type A given that site m is occupied by a 
molecule of type B; and AF,(s) is the difference 
between the vibrationally averaged form factors of a 
type-A molecule and a type-B molecule at site n. 

AFn(s) = Z f~a~(s)T(nAa)(s) exp (is . Rna)* (a~ 
o t  

- Y. f,/3 (s)T,~ ( ) exp (is. 1~(,~). (2) 
/3 

In (2) ,f~)(s)  is the scattering factor for pseudoatom a 
of the molecule of type A at site n; T~)(s) is the usual 
temperature factor for this pseudoatom; and 1~)  is the 
vector from some origin to the equilibrium position of 
the corresponding nucleus. 

The sum over n of (1) includes all molecular sites 
within the unit cell. For each site n, the sum over m 
includes all molecular sites within the correlation 
neighbourhood of this site (Epstein, Welberry & Jones, 
1982). 

Idlrr (s) of (1) consists of two types of contributions: 
terms with m = n (C~n~ = 1) make up the random 
distribution, corresponding to the diffuse X-ray scatter- 
ing from a crystal in which the arrangement of A-type 
and B-type molecules is random; and terms for which 
m 4= n, corresponding to correlation distributions. For 
each member m of the correlation neighbourhood of 
site n, the pair of sites m and n, together with 
symmetry-related pairs of sites, give rise to a corre- 
lation distribution. The contribution from this dis- 
tribution to Idlrr (s) of (1) is weighted by the correlation 
coefficient An Cnm. The correlation coefficients between 
symmetry-related pairs of molecular sites are assumed 
to be equal. 

The random and correlation distributions provide the 
basis functions for the analysis of the diffuse scattering. 
When no correlation exists between molecular sites (all 
correlation coefficients are zero) the diffuse scattering is 
that described by the random distribution only. Each 
distinct correlation distribution modulates this intensity 
distribution. Within each interference fringe of the 
random distribution, a particular correlation distri- 
bution re-distributes intensity, removing intensity from 
regions in which the correlation distribution is negative 
and adding intensity to regions in which the correlation 
distribution is positive. These modulations are 
characteristic of the intermolecular vectors between 
two sites and provide a means of determining the extent 
of correlation between the two sites. Examples of 
random and correlation distributions for 9-bromo- 
10-methylanthracene have been given previously 
(Epstein, Welberry & Jones, 1982). Further examples 
for 2,3-dichloro-6,7-dimethylanthracene are given later 
in this paper. 

Measurement of diffuse scattering 

Previous work in which the diffuse X-ray patterns were 
visually compared to optical or calculated patterns 
utilized the X-ray data in the form of an image on a 
photographic film. This was obtained in the manner 
described by Welberry (1983) from long-exposure 
Weissenberg photographs with the use of an Optronics 
P1700 photomation scanner/writer. Before the final 
image was printed using this device an empirical 
background correction was applied to remove ex- 
traneous intensity due to air scattering, fluorescence, 
Compton scattering, scattering from glass fibre and 
glue, and general film fog. In addition, the resultant 
optical density readings attributed to the disorder 
scattering were scaled by an enhancement factor to 
yield a suitably intense photographic image. For the 
present numerical work essentially the same procedure 
was adopted, although since no advantage is gained by 
using an enhancement factor, the intensity values were 
merely put on a convenient scale. 

A number of aspects of the data collection are worth 
a special note. Firstly, it is apparent from the diffuse 
scattering pictures shown in Figs. 2(a), 3(a), 4(a) and 
5(a) that in addition to the required diffuse scattering a 
number of other features are present in the reciprocal- 
lattice section. The Bragg peaks themselves must be 
avoided together with various streaks emanating from 
them (usually due to strain or powder caused by 
sample shaping). Similarly, Bragg peaks often have 
regions of strong thermal diffuse scattering around 
them due to acoustic phonons, and there may also be 
more general regions of thermal diffuse scattering 
which must also be avoided. In the present work we do 
not attempt to account for thermal diffuse scattering 
but avoid the necessity to consider it by using only data 
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obtained from regions in reciprocal space where the 
thermal scattering is assumed to be minimal. In all, for 
each reciprocal-lattice section, the intensity was 
measured at about 5000 reciprocal points. From these 
data 2000 were selected using the above criteria for use 
in the analysis. 

Secondly, it was found that the empirical back- 
ground correction applied to the data for previous 
semi-quantitative photographic work was not adequate 
for the present purposes although it was considered a 
useful first approximation. An additional correction 
was made to the intensities according to the following 
stratagem. We rely on the fact that, for the disorder 
scattering in which we are interested, the presence of 
correlations merely modifies the random distribution 
and will not affect regions where this distribution is 
zero. The random distribution may be calculated from 
a knowledge of the average structure and so the regions 
in reciprocal space where disorder diffuse scattering 
should be zero may be calculated at the outset. 
Preliminary tests showed that while the observed 
intensities invariably went through a minimum close to 
the calculated zeros of the random distribution the 
observed intensity values were consistently non-zero. 
This intensity must be additional scattering not due to 
substitutional disorder. Since it was a slowly varying 
function of reciprocal-space position it was treated as 
an additional background correction. 

Another consideration was one of resolution. The 
use of conventional Weissenberg photographs intro- 
duces a resolution function which was discussed by 
Welberry (1983). Since this effect is a minimum at low 
angles we used only data for which 0 < 25 ° (note in 
previous studies we have used data to 0 = 50 ° for Cu 
Kct radiation). (It should be noted also that, in general, 
thermal diffuse scattering is more pronounced at high 
angles.) 

L e a s t - s q u a r e s  a n a l y s i s  

The random and correlation distributions may be 
calculated using the positional and vibrational param- 
eters determined from the analysis of the Bragg 
intensities. These distributions, calculated at the 
reciprocal-space points at which data are measured, 
form the set of basis functions {D/(s)}, in terms of 
which the calculated diffuse intensities are described. 

I(dlCI~(Si) = ~ X l D I ( S i ) .  ( 3 )  
l 

In (3), x t is a distr ibut ion coefficient, related to the 
correlation coefficient by 

= AB x I k C,m, (4) 

where k is the product of the constant terms of (1) and 
a scale factor required to relate the calculated diffuse 
intensities to the relative intensities obtained from 
experiment. 

The distribution coefficients may be treated as 
variable parameters to be determined by minimizing 

= - -  Idi f f (s i ) l  , ( 5 )  e X wttI~°i~(sl) to) 2 
i 

where the weighting factor w i is the inverse of the 
estimated variance of I t°) Is "~ diff ~, i J" 

Since C~n B = 1 the coefficient x r for the random 
distribution may be used to determine the scale factor 
of (4). The correlation coefficients may then be 
determined directly from the ratios (Xl/Xr). 

When diffuse intensities are recorded using the 
Weissenberg camera, data from different sections of 
reciprocal space are measured separately. These data 
may be combined, using the intensities measured at 
common reciprocal-space points, to determined relative 
scaling factors between different sections. Alternatively, 
each section of reciprocal space may be analysed 
separately. For the analysis of 2,3-dichloro-6,7-di- 
methylanthracene, the latter procedure was adopted. 
Some difficulties arise with this procedure and these will 
be discussed below. 

In general, not all of the calculated distributions for a 
particular section of reciprocal space are independent. 
For example, in the hOl section, the correlation 
distribution corresponding to the pair of sites n and m is 
identical to that for the pair of sites n and m' when sites 
m and m' are related by a cell translation along the b 
axis. For these pairs of sites, however, C~Bm will not in 
general be equal to An C,,m,. The distribution coefficients 
corresponding to the independent distributions in a 
particular section of reciprocal space will therefore 
generally "be related to a linear combination of several 
correlation coefficients, i.e. 

= AB x t k(C",S~ + aC~S~, + tiC,,,,,, + ...). (6) 

When analysing data from each reciprocal-space 
section separately, the distribution coefficients may still 
be treated as linear parameters, to be determined by 
minimizing the least-squares residual for that section. 
The correlation coefficients, however, are no longer 
determined directly from the distribution coefficients. 
An additional step is required to solve the equations 
relating the distribution coefficients to the correlation 
coefficients. 

Using the set of distribution coefficients obtained 
from the analysis of a particular section of reciprocal 
space, the diffuse intensities calculated on a fine grid 
over the entire section may be significantly negative in 
regions where no data can be measured, such as near 
the origin of reciprocal space. To ensure a physically 
meaningful least-squares solution, the calculated diffuse 
intensities should then be constrained to be non- 
negative at selected points in reciprocal space, i.e. at sj, 

)_ xtDt(s) _> 0. (7) 
I 
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Minimizing t of (5) subject to the linear inequality 
constraints of (7) is formally a problem in quadratic 
programming. The solution may be obtained using an 
active set strategy (Gill & Murray, 1974). A vector X 0 = 
(x] °), x ~°), ..., xl°), ...) is first found which satisfies the 
constraints of (7) (i.e. X 0 is a feasible vector). For the 
analysis of the diffuse scattering, a convenient feasible 
vector is X 0 = (x r, 0, 0 . . . . .  0), where x r is the 
coefficient of the random distribution obtained from the 
unconstrained minimization of t. Since the random 
distribution is non-negative everywhere, the con- 
straints of (7) are necessarily satisfied. The vector X 0 is 
then updated by proceeding towards the unconstrained 
minimum until one of the constraints is no longer 
satisfied. This constraint is made active (i.e. the 
inequality constraint replaced by an equality con- 
straint) and a new minimum subject to this constraint 
found. This procedure is repeated, successively acti- 
vating constraints as required. When no further 
constraints are required to be activated, constraints 
which are no longer necessary are deleted from the 
active set and the procedure again repeated. The final 
solution vector is obtained at the minimum of e with 
fewest constraints active. 

F o r  each section of reciprocal space the set of 
independent distribution coefficients which satisfy the 
appropriate non-negativity constraints may be ob- 
tained. Estimates of the standard deviations of the 
coefficients and their correlations may be obtained 
from the variance-covariance matrix corresponding to 
the final set of active constraints. Because of the n o n -  
u n i q u e n e s s  of correlation distributions in a particular 
reciprocal-space section, the correlation coefficients 
cannot, in general, be determined from the ratios of 
distribution coefficients (xt /x)  as discussed earlier. To 
each distribution coefficient there corresponds an 
equation such as (6). More equations will, in general, be 
obtained than there are unknown correlation co- 
efficients. These equations may then be solved 
approximately by least squares. 

The unknowns in equations such as (6) are the scale 
factors (one for each reciprocal-space section) and the 
correlation coefficients. To solve the equations approxi- 
mately, non-linear least-squares techniques may be 
used. Alternatively (several) equations may be selected 
and the corresponding estimates of the distribution 
coefficients used to eliminate the scale factors. In this 
way reliable approximate values for the unknown 
correlation coefficients may be obtained using linear 
least squares. The equation for the random distribution 
coefficient for a particular section is a convenient 
choice for eliminating the scale factor for that section. 
This equation may be, for example, 

xr = k(1 + C 4 + C5). (8) 

The use of (8) to eliminate the scale factor of (6) results 
in the new equation 

AB AB X~ C AB + {lCnm, + x : ~Cnm,, + . . . -  ~C 4 --  x~C5, ( 9 )  

where the reduced distribution coefficient x[ is defined 
by 

X~ -= XI /X  r. (10) 

Note that the reduced distribution coefficient x} 
appears on both sides of (9). To solve these equations 
for  the correlation coefficients, the reduced distribution 
coefficients on the right-hand side of equations such as 
(9) are replaced by the corresponding estimates, 2~, 
obtained from the constrained least-squares analyses of 
the measured diffuse intensities, i.e. 

AB AS ^' - -  2 ~ C  5. ( 1 1 )  X~ : C AB a t- I~Cnm, + i~Cnm,, + . . . - x i C  4 

The variance of the coefficient ~[ appearing on the 
right-hand side of (11) is neglected. The correlation 
coefficients are then linear parameters in equations 
such as (11) and may be determined by minimizing 

~=  y a~-~(.f ~ -  x~) ~, (12) 
t 

where a~ is the estimated variance of 2[. Estimates of 
the standard deviations of the correlation coefficients 
and their correlations may be obtained from the 
resulting least-squares variance-covariance matrix. 
Note that covariances between estimates of the reduced 

A t distribution coefficients x t are neglected in this 
procedure. 

E x a m p l e  a n a l y s i s :  2 , 3 - d i c h l o r o - 6 , 7 - d i m e t h y l a n t h r a c e n e  

Observed diffuse scattering 

Crystals of 2,3-dichloro-6,7-dimethylanthracene 
were grown by vacuum sublimation. The average 
structure had space group P21/c with four molecules 
per unit cell (Welberry, Jones & Puza, 1983). Within 
the resolution of the measured Bragg intensities, the 
anthracene frame was ordered, but the chlorine and 
methyl substituents were disordered. At each site in the 
crystal, the molecule may assume one of two orien- 
tations; in one (labelled orientation A) the CI sub- 
stituents are attached to the carbons at positions 2 
and 3, while in the other (labelled orientation B) the C1 
substituents are attached to the carbons at positions 6 
and 7. From the analysis of the Bragg intensities the 
partial occupancy for molecules in orientation A, m A, 
was determined to be 0.60, with m 8 = 1 - rn A = 0.40. 

The observed intensity distributions for sin 0/2 < 
0.28 A -1 are shown for the Okl, hOl, h l l  and hhl 
sections in Figs. 2(a), 3(a), 4(a) and 5(a), respectively. 
These figures represent data which were first recorded 
o n  Weissenberg photographs, then undistorted and 
enhanced, as described by Welberry (1983). Measure- 
ments of diffuse scattering were restricted to regions 
away from suspected thermal diffuse scattering (in- 
dicated on the figures) and away from Bragg peaks. In 
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the Okl section, for example, measurements were 
restricted to the region 0 < k < 1.5 and 0 < l < 7.0 as 
shown in Fig. 2(a). 

Calculation of random distributions 
At each molecular site, the pseudoatoms of the 

anthracene frame are assumed to be identical in 
orientation A and orientation B. Therefore only the 
methyl and chlorine substituents contribute to the 
disorder diffuse scattering. From the analysis of the 
Bragg intensities the equilibrium position of the methyl 
carbon of a type-A molecule could not be resolved from 
the position of the corresponding chlorine of a type-B 
molecule. For the calculations of the random distri- 
butions, idealized positions, rather than these averaged 
positions were assumed. The idealized positions were 
calculated from previously determined C1-C- 
(aromatic) and CH3-C(aromatic) internuclear dis- 
tances as discussed by Jones & Welberry (1980) for 
disordered crystals of 9-bromo-10-methylanthracene. 
The idealized positions for the sublimation-grown 
crystals of 2,3-dichloro-6,7-dimethylanthracene are 
given in Table 1. 

Though anisotropic vibrational parameters for non- 
hydrogen nuclei were refined in the analysis of the 
Bragg intensities, equivalent isotropic vibrational 
parameters (approximately 0.05 A 2 at each site) were 
used for the calculations of diffuse scattering. 

From these equivalent positions and vibrational 
parameters, neglecting the scattering from the hydro- 
gen pseudoatoms of the methyl substituents, AF,(s) of 
(2) was calculated and the random distributions 
computed. Analytic approximations for the chlorine 
and methyl-carbon scattering factors were taken from 
Table 2.2B in International Tables for X-ray Crystal- 
lography (1974). 

The calculated random distributions for the OkI, hOI, 
hll  and hhl sections are shown in Figs. 2(c), 3(c), 4(c) 
and 5(c), respectively. Neglecting the effects of thermal 
diffuse scattering, differences between these distri- 
butions and the corresponding observed diffuse inten- 
sities indicate the effects of correlations between the 
molecular sites of the disordered crystal. 

Correlation neighbourhoods 
The sites at xo',z, Yc,),2, Yc, y + ½, ~. + ½ and xd, + ½, z 

+ ½were labelled by the designation codes 55501, 55502, 

Table 1. Idealized positions (fractional coordinates) 
for the chlorine and methyl-carbon substituents of 2,3- 

dichloro-6, 7-dimethylanthracene 

Molecule type A Molecule type B 

x y z x y z 

Cl(1) 0.4162 0.2332 0.4680 c(15) 0.4184 0.2394 
c1(2) 0.8446 0.4144 0.4431 c(16) 0.8157 0.4074 
c(15) -0.2628 0.2408 0.0935 Cl(l) -0.2932 0.2347 
c(16) 0.1358 0.4101 0.0702 c1(2) 0.1374 0.4171 

0.4598 
0.4366 
0.0871 
0.0620 

55503 and 55504, respectively (Epstein, Welberry & 
Jones, 1982). The correlation neighbourhood for site 
55501 included 120 sites. The orientations of A-type 
molecules in five of the sites of the correlation 
neighbourhood, 65503, 55503, 65504, 55504 and 
66602 are shown in Fig. 1. The diffuse scattering in 
each section of reciprocal space reveals details about 
the corresponding projection of the correlation 
neighbourhood. For the Okl, hOl and hhl sections, Figs. 
2(d), 3(d) and 5(d) show the appropriate projections of 
the neighbourhood of 55501. All molecules are shown 
in the A-type orientation. The extent of the 
neighbourhood was determined by including surround- 
ing molecular sites up to two cell translations along 
axes a,b and e from the site at 55501. The neigh- 
bourhoods for the other three sites in the unit cell are 
related by symmetry to the neighbourhood for 55501. 

The 120 sites in the correlation neighbourhood of 
55501 represent the maximum possible number of 
distinct correlation distributions used for analysis. 
Because of the assumption that correlations between 
symmetry-related pairs of sites are equal, each of these 
distributions has the space-group symmetry. However, 
two distinct neighbours may give rise to correlation 
distributions which are identical in all reciprocal space. 
This occurs when the internuclear vector from 55501 to 
site m of the neighbourhood is related by symmetry to 
the corresponding vector to some other site, m'. The 
correlation coefficients between 55501 and these two 
sites are also assumed to be equal although this is not 
required from consideration of the symmetry of the 
observed diffuse scattering. For example, the coefficient 
between 55501 and 65503 was assumed to be equal to 
that between 55501 and 64503. In this way 74 distinct 
coefficients were used to describe the correlations to the 
120 sites of each neighbourhood. 

Calculation of correlation distributions 
The correlation distributions were calculated as 

described for the random distribution. Examples of 
correlation distributions for the four sections are shown 

Fig. 1. Stereoview of several molecules in the correlation neigh- 
bourhood of site 55501. All molecules are shown in the A-type 
orientation. Chlorine substituents are indicated by filled circles. 
C1/Me contacts less than 4 A are shown by dashed lines. 
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in Figs. 2(e), 2(f) ,  3(e), 3(f ) ,  4(d), 5(e) and 5(f) .  For 
the Okl section, the correlation distribution for site 
65503 (Fig. 2 f )  removes intensity from the central 
regions of the fringes of the random distribution and 
adds intensity to the outer regions. The superposition of 
this correlation distribution and the random distri- 
bution would produce an intensity distribution which 
agrees qualitatively with some of the features of the 
observed intensity distribution, suggesting that the 
correlation between sites 55501 and 65503 is signifi- 
cant. For the hOl section, the correlation distribution 
for site 65504 (Fig. 3e) re-distributes the intensity of 
the random distribution in qualitative agreement with 
features of the observed distribution, indicating that the 
correlation between 55501 and 65504 is also expected 
to be significant. 

(d) 

(" 

6 0 

h 

Fig. 2. Diffuse scattering for the Okl section. (a) Observed diffuse 
scattering. Regions of thermal diffuse scattering are labelled by 
the letter A. Analysis of data measured within the region bounded 
by dashed lines was carried out using least squares as discussed 
in the text. (b) Calculated diffuse scattering after least-squares 
analysis. Contour level ~85 intensity units. (c) Calculated 
random distribution. Contour level ~ 50. (d) a-axis projection of 
an ordered representation of the structure. Chlorines are 
indicated by filled circles. (e) Calculated correlation distribution 
for site 65504 (within correlation neighbourhood of 55501). 
Dashed contours are negative, contour level ~50. ( f )  Corre- 
lation distribution for site 65503. Contours as in (e). 

As discussed earlier, not all of the 75 distributions 
(the random distribution and 74 correlation distri- 
butions) are independent for each section of reciprocal 
space. For the Okl, hOl and h l l  sections, determining 
which distributions are identical is straightforward. For 
example, the correlation distributions for 66602, 
76602, 56602 and 86602 are identical in the Okl 
section. The distribution coefficient for the 66602 
distribution therefore represents the sum of four distinct 
correlation coefficients. For the hhl  section, however, 
the relationship between distributions is less obvious. 
From (1) and (2), the various distributions may be 
represented in terms of the sum of cosines involving 
internuclear vectors. Let R be the internuclear vector 
between two particular pseudoatoms, one belonging to 
the molecule at site 55501, and the other belonging to 
the molecule at site 86602. The correlation distribution 
for 86602 then involves the terms 

cos (s. R) + cos (s. R'), (13) 

(d) 

• 7 - - / ~  

v, 

.(" 

/ ",'°2 • 

Fig. 3. Diffuse scattering for the hOI section. (a) Observed diffuse 
scattering. Features marked as in Fig. 2(a). (b) Calculated diffuse 
scattering after least-squares analysis. Contour level ,,,55. (c) 
Random distribution (d) b-axis projection of an ordered 
representation of the structure. (e) Correlation distribution for 
site 65504. ( f )  Correlation distribution for site 65503. (c)-(f)  as 
described in Fig. 2. 



888 D I F F U S E  S C A T T E R I N G  F R O M  2 , 3 - D I C H L O R O - 6 , 7 - D I M E T H Y L A N T H R A C E N E  

where R'  is related to R by the twofold screw axis of  
space group P21/c. The correlat ion distributions for 
66602,  77602 and 75602 then involve the following 
terms 

66602:  cos I s . ( R  + 2a)l + cos l s . ( R '  -- 2a)l (14) 

77602:  cos l s . ( R  + a -  b)] + cos [ s . ( R '  -- a - -  b)] (15) 

75602:  cos [ s . ( R  + a + b)l + cos [ s . ( R '  -- a + b)l .(16) 

F rom considerat ion of  the terms in (13) - (16)  for the 
hhl section 

D75602(s ) : O86602(s ) + D66602(s ) - D77602(s ). (17) 

Similarly, 

D64602(s ) --- D86602(s ) + D55602(s ) - O77602(s ). (18) 

F rom (17) and (18) 

C666o2D666o2(S) + C646o2D646o2(S) + C756o2D756o2(S) 

+ C776o2D776o2(S) + C556o2D556o2(S) + C866o2D866o2(S) 

= (C666o 2 4- C756o2)D666o2(S) 

+ (C556o 2 + C646o2)D556o2(S) 

4- (C866o 2 4- C646o 2 + C756o2)D866o2(S ) 

4- (C776o 2 --  C646o 2 --  C756o2)D776o2(S ). (19) 
The distribution coefficients for the four distributions of  
the r ight-hand side of  (19) are therefore related to the 
six distinct correlat ion coefficients of  (19) by the 
equations 

X66602 = k(C666o 2 4- C756o 2) (20) 

X55602 : k(C55602 + C64602) (2 1) 

X86602 : k(Cs6602 + C64602 -F C75602) (22) 

X77602 = k(C77602 -- C64602 - C75602). (23) 
Equat ions  (20) - (23)  are four of  the 56 equations 
relating the distribution coefficients of  the hhl section to 
the 74 unknown correlation coefficients. A further 26 
equations were obtained from the Okl section and 33 
equat ions f rom each of  the hOl and h l !  sections. The 
number  of  equat ions corresponds  to the number  of  
independent  distributions for each section. 

Least-squares results 

After  initial least-squares analyses,  the diffuse 
intensities calculated near  the origin of  reciprocal 
space,  where no da ta  could be measured,  were negative. 
[Note that  the intensity calculated at the origin of  
reciprocal  space must  necessari ly be zero since AF,(O) 

(b) 

(d) 

% 
III01 

Fig. 4. Diffuse scattering for the hll section. (a) Observed diffuse 
scattering. Features marked as in Fig. 2(a). (b) Calculated diffuse 
scattering after least-squares analysis. Contour level ~ 110. (c) 
Random distribution. (d) Correlation distribution for site 65503. 
Contours for (c) and (d) as in Figs. 2(c) and (e), respectively. 

Fig. 5. Diffuse scattering for the hhl section. (a) Observed diffuse 
scattering. Features marked as in Fig. 2(a). (b) Calculated diffuse 
scattering after least-squares analysis. Contour level ~60. (c) 
Random distribution. (d) Projection of an ordered represen- 
tation of the structure along I1 J01. (e) Correlation distribution 
for site 65504. (f)  Correlation distribution for site 65503. 
(c)-(f) as described in Fig. 2. 
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vanishes when type-A and type-B molecules are 
iso-electronic.] At selected points near the origin, the 
calculated diffuse scattering was therefore constrained 
to be non-negative. 

During the unconstrained analyses, data which 
differed from the calculated diffuse intensities by more 
than three standard deviations (after background 
subtraction) were rejected. Rejection of data was 
justified since diffuse streaks, which were apparently 
not due to substitutional disorder (e.g. powder streaks), 
were evident on the undistorted photographs. 

Details of the least-squares analyses for the four 
sections of reciprocal space are given in Table 2. As an 
example of the results obtained, the reduced distribution 
coefficients J~ and their standard deviations obtained 
for the Okl section are given in Table 3. For this 
section, the largest distribution coefficients were those 
for the random and 65503 distributions, as expected 
from qualitative consideration of Figs. 2(a), (c) and 
(f).  Note that although the value of a particular 
reduced distribution coefficient may not differ sig- 
nificantly from zero, the related correlation coefficients 
may not necessarily be negligibly small because of 

Table 2. Details of the least-squares analyses for 
2, 3-dichloro-6, 7-dimethylanthracene 

Reciprocal-space  section 

Okl hOl h 1 l h h l  

Number of data 2115 2014 2014 3171 
Number rejected* 45 14 78 70 
Range of sin (0)/2 (A -~) _<0.16 <0.26 <0-27 <0.29 
Number ofdistribution coefficients 26 33 33 56 
Active constraints at solution 7 2 0 2 
Weighted R factort  0.187 0.354 0.230 0.340 

* Rejection criterion: AI > 3a r 
t Defined by R = {" t  w I <°) t~ ~ (¢> 2 ~o~ 2 t/2 I dlff,°t, -- ldlff(S/) /Z I  Wt[Idirr(st)l } • 

Table 3. Reduced distribution coefficients from the 
constrained least-squares analysis of the Okl section for 

2,3-dichloro-6, 7-dimethylanthracene 

possible cancellation between the correlation 
coefficients [see for example (20)-(23)]. 

Contour plots of the calculated intensity distri- 
butions for the Okl, hOl, h ll and hhl sections are shown 
in Figs. 2(b)-5(b), respectively. Neglecting thermal 
diffuse scattering, the agreement with the correspond- 
ing measured diffuse intensities of Figs. 2(a)-5(a) is 
considered satisfactory. 

From the distribution coefficients obtained for the 
four sections, equations such as (11) involving reduced 
distribution coefficients were formed, as discussed 
previously. Since the equations obtained from the hOl 
and h ll sections were identical in form, estimates of 
corresponding reduced distribution coefficients were 
averaged to produce one set of equations. A final set of 
112 equations was obtained involving the 74 cor- 
relation coefficients. This number of equations proved 
to be insufficient and three correlation coefficients 
which were expected to be small, C575m, C745m and 
C85602, were set equal to zero. 

With this further approximation, a solution of the 
least-squares equations resulting from minimizing e of 
(12) was obtained with a weighted R factor of 0.103. 
The values obtained for the 71 correlation coefficients 
and their standard deviations are given in Table 4. 

Thirty-five of the coefficients were significantly 
different from zero, with the first 25 entries of Table 4 
significant at the 2a level and the first 13 entries 
significant at the 30 level. The largest correlations were 
between site 55501 and the nearest-neighbour sites 
65503 and 64503 [correlation coefficient 0.46 (7)], and 
between site 55501 and the nearest-neighbour sites 
65504 and 45404 [correlation coefficient 0.37 (4)]. The 
first 13 entries of Table 4 correspond to the correlation 
coefficients between site 55501 and 24 sites of the 
correlation neighbourhood. Equivalent sites in Table 4 
are bracketed (two sites are equivalent if the two sets of 
internuclear vectors to 55501 are symmetry related). 
Elements of the least-squares correlation matrix with 
magnitudes greater than 0.6 are given in Table 5. The 
maximum value was 0.97 between C475o I and C435o 1. 

Standard  deviations are given in parentheses and refer to the last 
significant figures. 

Distribution Coefficient Distribution Coefficient 

Random 1.000 57502 -0 .028  (12) 
56501 0-456 (8) 35402 0.017 (10) 
57501 0.054 (7) 36402 -0 .042  (11) 
75601 0.032 (6) 95702 -0 .023 (10) 
76601 0.061 (16) 96702 0.034 (12) 
36401 -0 .072  (16) 65503 1.363 (9) 
66602 0.188 (12) 66503 0.109 (9) 
67602 0.039 (12) 45403 0.012 (11) 
65602 -0-063 (12) 85603 -0.031 (13) 
74602 -0 .009  (1 I) 55504 0.363 (12) 
55502 0.168 (13) 56504 -0 .037 (14) 
56502 0.056 (12) 54504 0.039 (13) 
54502 0.045 (10) 85604 -0 .013 (12) 

Discussion 

Five approximations have been made during the course 
of the present work. These are: 

(i) The diffuse scattering from displacement disorder 
(of either static or dynamic origin) has been neglected. 

(ii) Random and correlation distributions were 
calculated from non-hydrogen disordered pseudo- 
atoms only. The scattering from disordered hydrogen 
pseudoatoms has been neglected. 

(iii) The diffuse intensities measured at the zeros of 
the random distribution were assumed to be scattering 
other than from substitutional disorder and were 
subtracted as background scattering. 
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Table 4. Correlation coefficients for the neighbours of 
site 5 5 5 01 for 2, 3-dichloro-6,7-dimethylan thracene 

Standard deviations are given in parentheses and refer to the last 
significant figure. Equivalent sites are bracketed. 

Site Coefficient Site Coefficient Site Coefficient 

65503"1, 45403 
64503~ 0.46 (7) 44403 } 0.04 (2) 55602 0-05 (7) 
65504)' 
45404J 0.37 (4) 86602 0.13 (8) 57502 0.01 (9) 
55504)' 
55404~ -0.24 (5) 55502 0.12 (9) 46502 0.04 (7) 

76602 0.23 (5) 75602 0.07 (5) 45502 0.03 (9) 

56501 } 0.20 (4) 74504} 0.06 (4) 47502 -0.03 (9) 
54501 34404 

56502 0.20 (7) 47501 } -0-06 (4) 43502 -0.02 (6) 
63501 

54504 46401 } -0.05 (3) 65502 0.06 (7) 
54404 } -0.17 (5) 64601 
56504 85603 
56404 } -0.14 (4) 84603 } 0.05 (3) 36502 0.00 (8) 
64504 
44404 } 0.13 (4) 54502 0.04 (3) 35502 -0.06 (6) 

46501 76504)' 
64501 } 0.12 (4) 36404. ~ 0.04 (3) 95702 -0.01 (2) 

66504 } O. 10 (3) 96702 0.03 (2) 36402 -0.02 (2) 
46404 
35401 } 0.07 (2) 45501 
75601 65501 } -0-02 (5) 35402 0.02 (2) 
45401 35501 66503 )' 
65601 } -0.06 (2) 75501 } -0.02 (4) 0.04 (4) 63503 J 
66502 --0.18 (8) 34501 75503 )' 76501} -0.05 (5) 0.00 (4) 74503 J 

36401 46503 
67602 --0.17 (7) 74601 } 0.01 (3) -0.02 (3) 43503 J 

44401} -0.01 (3) 45503), 
66602 -0.16 (7) 66601 44503) 0-04 (4) 

55503 } 0.15 (7) 85601 85503 ", 
54503 25401} 0-01 (2) -0.01 (2) 84503 J 
56503 ), 86601"1. 35503 ). 
53503 -~ 0.10 (4) 24401.~ 0-01 (2) -0-01 (3) 34503 J 
43501 84601 65603 ), 
67501 } 0.08 (4) 26401} 0.01 (2) -0-02 (2) 64603 J 
76503 35403 } 0.02 (2) 
73503 } -0.07 (3) 77602 0.04 (8) 34403 
75603 75504 } 
74603 } -0.06 (3) 65602 -0.01 (7) 0.00 (5) 35404 
44501 45504 ). 
66501 } -0.06 (3) 64602 -0.02 (6) 65404 J 0-03 (5) 
55403 85604 ). 
54403 } -0.05 (2) 74602 0.02 (7) 0.01 (1) 25304 J 
34401 
76601 } 0.04 (2) 56602 -0.04 (8) 

Table 5. Correlations (magnitude > 0.6) between 
coefficients of Table 4 

C4.75ol, C435o I -0.97 C5,15o2, C365o 2 +0.74 C5~o 2, Cs66o 2 -0.68 
C57502., C47502 -0.93 C6760 z, C64602 -0.71 C67602, C86602 +0.67 
C67~02, C77602 -0.91 C66503,~ C46503 -0.70 C45501, C44501 +0.66 
C64602, C74602 0-90 C56503, C76503 -0-70 C56502, C36502 +0-66 
Cs6so 1, C455o I -0.83 C~46o ~, C77~o2 +0.70 Css6o 3, C756o3 -0.66 
C66502, C36502 --0"80 C776o 2, C5~o 2 +0.70 C455oi, C755ol -0.64 
C46502,, C36502 -0-79 C57502, C46502 -0 .70 C55502, C46502 -0-64 
C56502~ C46502 -0-78 C46502~ C47502 +0-70 C558o 2, C455o z -0 .64  
C~65o 2, C665o 2 -0.76 C435o l, C765ol -0.69 C646o 2, C566o 2 +0.63 
C475o2, C365o2 -0-76 C676o 2, C746o 2 +0.69 C776o 2, Cso~o 2 -0.63 
C6~5o 3, C565o 3 -0.74 C4~5ol, C'l~5ol +0.68 C565o 2, C455o 2 -0.63 
C676o2, C566o 2 -0.74 C77602, C74602 -0.68 C64504, C54504 -0-61 

C6460z,, C55602 -0.61 
C74602.~ C55602 -0 .6  1 
Cs66o2, C556o 2 -0-60 

(iv) The variances of reduced distribution coefficients 
appearing on the right-hand side of equations such as 
(11) have been neglected. 

(v) Covariances between reduced distribution 
coefficients have also been neglected when solving the 
equations for the correlation coefficients. 

By careful selection of data, thermal diffuse scatter- 
ing in the immediate vicinity of the Bragg peaks may be 
ignored without consequence. Elsewhere in reciprocal 
space, the diffuse scattering from displacement dis- 
order (dynamic or static) is of greater concern, 
particularly when this scattering occurs in the same 
regions of reciprocal space as that from substitutional 
disorder. The analysis of the diffuse scattering has been 
confined to those intensities measured at low angles, 
where the contribution from displacement disorder is 
least. The neglect of thermal diffuse scattering at more 
general positions in reciprocal space may be critically 
examined by carrying out quantitative analyses of the 
diffuse scattering measured at several different tem- 
peratures. As mentioned in the Introduction, the degree 
of substitutional disorder is 'frozen in' at crystal growth 
and remains constant as the crystal temperature is 
varied. The sets of correlation coefficients obtained 
from analysis at different temperatures should there- 
fore not differ significantly. Preliminary studies at 
~ 300 and ~ 180 K of disordered crystals of one isomer 
of dibromodimethyldiethylbenzene showed that the 
pattern of diffuse scattering at general positions in 
reciprocal space was qualitatively the same at the two 
temperatures. At the lower temperature, the intensity of 
diffuse scattering at high angles was increased, pre- 
sumably due to the smaller amplitudes of vibration. 
These studies are proceeding and will be reported 
elsewhere. 

Approximation (ii) is justified for the analyses of 
2,3-dichloro-6,7-dimethylanthracene since the domi- 
nant contributions to the calculated distributions are 
from C1-C1 and C-CI pairs of pseudoatoms. The 
scattering from CI-H, C - H  and H - H  pairs may be 
neglected by comparison. 

The approximation (iii) that the diffuse scattering 
measured at the zeros of the random distribution may 
be considered as background scattering was regarded 
as the most sensible way to proceed. The random 
distribution was calculated from structural parameters 
obtained from analysis of the Bragg intensities. The 
fringe pattern of the random distribution depends on the 
magnitude and direction of the internuclear vectors 
between disordered pseudoatoms at the same molecular 
site. If the positions of the disordered pseudoatoms 
were incorrect, or the disordered hydrogen pseudo- 
atoms could not be neglected [see approximation (ii)], 
then the zeros of the random distribution would not be 
in 1 : 1 correspondence with the minima of the measured 
intensities. The intensity measured at the zeros of the 
random intensity was therefore attributed to scattering 
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from air or from the crystal mount, or to Compton 
scattering, or to fluorescence from the halogen substit- 
uents. During preliminary least-squares analyses, this 
additional scattering was well described by a term 
which was constant over the reciprocal-space section. 
However, treating this scattering as local background 
correction was considered preferable. 

The equations relating the distribution coefficients to 
the correlation coefficients were solved approximately 
by first using the equation for the random distribution 
coefficient to eliminate the scale factor for each 
reciprocal-space section. This procedure is equivalent 
to introducing a set of constraints such that the 
calculated random distribution coefficients are set equal 
to their estimated values. In this way the equations 
relating the reduced distribution coefficients to the 
correlation coefficients are linear. Approximations (iv) 
and (v) then enabled these equations to be solved 
approximately by linear least squares. None of the 
constraints or (iv) and (v) need be introduced if the 
scale factors and correlation coefficients are considered 
simultaneously as non-linear parameters. The pro- 
cedures required to solve the non-linear equations are 
more complicated and convergence to the required 
solution is expected to be slow. The procedures used in 
the present work are justified by their simplicity. More 
complex techniques are not expected to alter signi- 
ficantly the correlation coefficients reported in Table 4. 
Combining the data obtained for each reciprocal-space 
section may be more preferable than treating each 
section separately. Non-linear techniques as well as 
approximations (iv) and (v) could then be avoided. The 
correlation coefficients could be determined directly 
from the ratios (xt/x,). 

In studies of 9-bromo- 10-methylanthracene reported 
previously (Epstein, Welberry & Jones, 1982; Wel- 
berry, Jones & Epstein, 1982), nearest neighbours were 

assigned primary correlation coefficients and the 
coefficients for other sites in the neighbourhood were 
assumed to be products of these. One feature of the 
present work is that no assumptions are made about 
the relationship of non-nearest-neighbour coefficients to 
the primary coefficients. The coefficients of Table 4 
may be compared with the corresponding product-rule 
estimates, assuming the most direct correlation path- 
way. Product-rule estimates for the first fifteen non- 
nearest-neighbour correlations of Table 4 are given in 
Table 6. For next-nearest neighbours, the product-rule 
estimates are generally in good agreement with the 
values of Table 4. Estimates for the correlations 
between more distant neighbours are generally smaller 
in magnitude than in Table 4. 

Summary and concluding remarks 

A procedure has been presented for the quantitative 
determination of correlation coefficients between sites 
of a substitutionally disordered molecular crystal from 
the analysis of the diffuse intensities of X-rays scattered 
by the crystal. Neglecting thermal diffuse scattering, 
data measured from Weissenberg photographs have 
been analysed by linear least squares using calculated 
random and correlation distributions. No assumptions 
were made about the correlations between non-nearest- 
neighbour sites. For disordered crystals of 2,3-dichloro- 
6,7-dimethylanthracene grown by sublimation, corre- 
lations for sixty neighbours of each molecular site were 
found to be significantly different from zero. 

The procedures reported here represent a means by 
which the analysis of diffuse X-ray scattering from 
disordered crystals may be carried out in a routine 
fashion. Some of the assumptions made are somewhat 
crude, but enable the procedures to be kept simple. 
Further work is required to appraise critically the 
accuracy of the results obtained. 

Table 6. Product-rule estimates of non-nearest- 
neighbour site correlation coefficients of Table 4 

F r o m  
Site Product Estimate Table 4 

56501 C655o 3 x C655o 3 0.21 (5) 0.20 (4) 
54504 C554o 4 x C655o 3 x C655o 3 - 0 . 0 5  (1) - 0 . 1 7  (5) 
56504 C55404 x C65503 x C655o 3 - 0 . 0 5  (1) - 0 . 1 4  (4) 
64504 C65503 x C6~503 x C655o 4 0.08 (2) 0.13 (4) 
46501 C55503 x C65503 0.07 (3) 0.12 (4) 
66504 C655o 3 X C65503 X C65504 0 '08 (2) 0" 10 (3) 
75601 C~so 4 x C~55o 4 O. 14 (2) 0.07 (2) 
65601 C6~5o 4 x C555o 4 - 0 - 0 9  (2) - 0 . 0 6  (2) 
66502 C65s03 x C55504 - 0 . 1 1  (3) - 0 . 1 8  (8) 
67602 C666o 2 x C655o 3 x C~55o 3 - 0 . 0 3  (1) - 0 . 1 7  (7) 
56503 C55503 x C65503 x C65503 0.03 (2) O. 10 (4) 
67501 C555o 3 X C655o 3 0.01 (1) 0.08 (4) 
76503 C5s5o 3 x C65503 x C655o 3 0.03 (2) - 0 . 0 7  (3) 
75603 C655o 4 x C666o 2 - 0 . 0 6  (3) - 0 . 0 6  (3) 
44501 C655o 3 x C555o 3 0-07 (3) - 0 . 0 6  (3) 

We are indebted to Dr M. R. Osborne, Research 
School of Social Sciences (Statistics), Australian 
National University, who developed for us an efficient 
algorithm for the solution of the quadratic programm- 
ing problem. We are also grateful to him for many 
helpful discussions on numerical procedures during the 
course of this work. 
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Abstract 

A simple single pixel equation (SPE) is presented 
which, when solved self-consistently for each pixel, can 
yield exact solutions to the statistical inversion problem 
for diffraction data outlined in paper I of this series 
[Wilkins, Varghese & Lehmann (1983). Acta Cryst. 
A39, 47-60].  The SPE approach was used to obtain 
the results presented in I and is shown here to have 
both practical and heuristic advantages in that it: (i) 
provides a very transparent approach to the task of 
solving the fundamental equations of the statistical 
geometric problem, (ii) can greatly improve the rate of 
convergence and (iii) readily allows the convexity of the 
constraint contributions to be monitored and, if desired, 
controlled. For the important case of 'phase refinement' 
via constraint (1) of I and the assumption of: (i) a 
complete data set of E k up to the resolution limit of the 
data and (ii) uniform errors (i.e. trk.~ = tr), it is shown 
that the maximum-entropy structure (MES)  can be 
fully refined via the SPE in only one Fourier transform 
cycle, and so should be extremely efficient for biological 
macromolecules. 

1. Introduction 

In the first paper in this series (Wilkins, Varghese & 
Lehmann, 1983, hereafter termed I), we laid the 
foundations for an information-theory-based approach, 
termed statistical geometry (SG), to the crystal- 
lographic inversion problem and presented (see also 
Gull & Daniell, 1978) a set of N coupled non-linear 
equations (eqs. I. 14a) for the discrete distribution, p, of 
scattering density in the unit cell. If the SG method of 
structure determination and refinement is to be made a 
practical tool applicable to biological macromolecules, 
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then highly effÉcient methods of solving these equations 
must be developed (cf, e.g., Gull & Daniell, 1978; 
Collins, 1982). This paper and the following one in the 
series (Wilkins, 1983) are both directed to that end. 

In the present paper we develop and discuss a new 
approach to the exact numerical solution of these 
non-linear equations which proceeds via a single pixel 
approximation (SPA) and in many ways resembles the 
mean-field-type of approximations often encountered in 
quantum mechanics and statistical mechanics. Because 
of its simplicity, such an approach offers both heuristic 
and practical advantages (e.g., improved convergence 
properties) although it need not necessarily lead to a 
solution. For a very important special case, namely that 
of 'phase  refinement' using constraint (1) of I alone and 
some other typically reasonable assumptions (see § 4) 
it is shown that the structure can be fully refined 
(within the SG framework) via the SPE in only one 
Fourier transform cycle, and so offers an extremely 
efficient approach to structure refinement even for 
biological macromolecules. 

2. The single pixel approximation (SPA) 

Following the notation and definitions introduced in I 
and starting from equations (I.14) we may Taylor 
expand the exponent there to first order in pj about an 
arbitrary trial structure, pt = pt0), and write 

p j=  exp - 2  o-~ . .  fj,to~ + ~ (pj, ~J' ,'J'J ~J j, 

for j =  1 . . . . .  N, (1) 

where 2 0 is the Lagrange multiplier associated with the 
normalization constraint (termed the structural 
freedom in I) and ~ the Lagrange multiplier vector 
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